
  

Advanced Parallel Programming

Is there life beyond MPI?



  

Outline

● MPI vs. High Level Languages
● Declarative Languages
● Map Reduce and Hadoop
● Shared Global Address Space Languages
● Charm++
● ChaNGa
● ChaNGa on GPUs



  

Parallel Programming in MPI

● Good performance
● Highly portable: de facto standard
● Poor match to some architectures

● Active Messages, Shared Memory

● New machines are hybrid architectures
● Multicore, Vector, RDMA, Cell

● Parallel Assembly?



  

Parallel Programming in High 
Level Languages

● Abstraction allows easy expression of new 
algorithms

● Low level architecture is hidden (or 
abstracted)

● Integrated debugging/performance tools
● Sometimes a poor mapping of algorithm onto 

the language
● Steep learning curve



  

Parallel Programming Hierarchy

● Decomposition of computation into parallel 
components
● Parallelizing compiler, Chapel

● Mapping of components to processors
● Charm++

● Scheduling of components
● OpenMP, HPF

● Expressing the above in data movement and 
thread execution
● MPI



  

Language Requirements

● General Purpose
● Expressive for application domain

● Including matching representations: *(a + i) vs a[i]

● High Level
● Efficiency/obvious cost model
● Modularity and Reusability

● Context independent libraries
● Similar to/interoperable with existing languages



  

Declarative Languages

● SQL example:

SELECT SUM(L_Bol) FROM stars WHERE 
tform > 12.0

● Performance through abstraction
● Limited expressivity, otherwise

● Complicated
● Slow (UDF)



  

Map Reduce & Hadoop

● Map: function produces (key, value) pairs
● Reduce: collects Map output
● Pig: SQL-like query language
● Effective data reduction framework
● Not suitable for

HPC



  

Array Languages, e.g., CAF

● Arrays distributed across images
● Each processor can access data on other 

processors via co-array syntax

call sync_all(/up, down/)

new_A(1:ncol) = new_A(1:ncol) 
+A(1:ncol)[up] + A(1:ncol)[down]

call sync_all(/up, down/)

● Easy expression of array model
● Cost transparent



  

Programmer: [Over] 
decomposition into virtual 
processors

Runtime: Assigns VPs to 
processors

Enables adaptive runtime 
strategies

User View

System implementation

• Software engineering
– Number of virtual processors can 

be independently controlled
– Separate VPs for different 

modules

• Message driven execution
– Adaptive overlap of 

communication

• Dynamic mapping
– Heterogeneous clusters

• Vacate, adjust to speed, 
share

– Automatic checkpointing
– Change set of processors used
– Automatic dynamic load 

balancing
– Communication optimization

Benefits

Charm++: Migratable Objects



  

User view



  

System View



  

Gravity Implementations

● Standard Tree-code
● “Send”:  distribute particles to tree nodes as 

the walk proceeds.
● Naturally expressed in Charm++
● Extremely communication intensive

● “Cache”: request treenodes from off 
processor as they are needed.
● More complicated programming
● “Cache” is now part of the language



  

ChaNGa Features

● Tree-based gravity solver
● High order multipole expansion
● Periodic boundaries (if needed)
● SPH: (Gasoline compatible)
● Individual multiple timesteps
● Dynamic load balancing with choice of 

strategies
● Checkpointing (via migration to disk)
● Visualization



  

Cosmological Comparisons:
Mass Function

Heitmann, et al. 2005
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Overall structure
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Remote/local latency hiding
Clustered data on 1,024 BlueGene/L processors

5.0s

Remote data work

Local data work
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Load balancing with GreedyLB
Zoom In 5M on 1,024 BlueGene/L processors

5.6s 6.1s

4x messages
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Load balancing with OrbRefineLB
Zoom in 5M on 1,024 BlueGene/L processors

5.6s 5.0s
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Scaling with load balancing
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Cosmo Loadbalancer

● Use Charm++ measurement based load 
balancer

● Modification: provide LB database with 
information about timestepping.
● “Large timestep”: balance based on previous 

Large step
● “Small step” balance based on previous small 

step



  

Results on 3 rung example

613s
429s 228s



  

Multistep Scaling



  

SPH Scaling



  

ChaNGa on GPU clusters

● Immense computational power
● Feeding the monster is a problem
● Charm++ GPU Manager

● User submits work requests with callback
● System transfers memory, executes, returns via 

callback
● GPU operates asynchronously
● Pipelined execution



  

Execution of Work Requests



  

GPU Scaling



  

GPU optimization



  

Summary

● Successfully created highly scalable code in 
HLL
● Computation/communication overlap
● Object migration for LB and Checkpoints
● Method prioritization
● GPU Manager framework

● HLL not a silver bullet
● Communication needs to be considered
● “Productivity” unclear

– Real Programmers write Fortran in any language
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Availability

● Charm++: http://charm.cs.uiuc.edu
● ChaNGa download: 

http://software.astro.washington.edu/nchilada/
● Release information: 

http://hpcc.astro.washington.edu/tools/changa.html
● Mailing list: changa-users@u.washington.edu

http://charm.cs.uiuc.edu/
http://software.astro.washington.edu/nchilada/
http://hpcc.astro.washington.edu/tools/changa.html
mailto:changa-users@u.washington.edu
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