

Advanced Parallel Programming

Is there life beyond MPI?

Outline

● MPI vs. High Level Languages
● Declarative Languages
● Map Reduce and Hadoop
● Shared Global Address Space Languages
● Charm++
● ChaNGa
● ChaNGa on GPUs

Parallel Programming in MPI

● Good performance
● Highly portable: de facto standard
● Poor match to some architectures

● Active Messages, Shared Memory

● New machines are hybrid architectures
● Multicore, Vector, RDMA, Cell

● Parallel Assembly?

Parallel Programming in High
Level Languages

● Abstraction allows easy expression of new
algorithms

● Low level architecture is hidden (or
abstracted)

● Integrated debugging/performance tools
● Sometimes a poor mapping of algorithm onto

the language
● Steep learning curve

Parallel Programming Hierarchy

● Decomposition of computation into parallel
components
● Parallelizing compiler, Chapel

● Mapping of components to processors
● Charm++

● Scheduling of components
● OpenMP, HPF

● Expressing the above in data movement and
thread execution
● MPI

Language Requirements

● General Purpose
● Expressive for application domain

● Including matching representations: *(a + i) vs a[i]

● High Level
● Efficiency/obvious cost model
● Modularity and Reusability

● Context independent libraries
● Similar to/interoperable with existing languages

Declarative Languages

● SQL example:

SELECT SUM(L_Bol) FROM stars WHERE
tform > 12.0

● Performance through abstraction
● Limited expressivity, otherwise

● Complicated
● Slow (UDF)

Map Reduce & Hadoop

● Map: function produces (key, value) pairs
● Reduce: collects Map output
● Pig: SQL-like query language
● Effective data reduction framework
● Not suitable for

HPC

Array Languages, e.g., CAF

● Arrays distributed across images
● Each processor can access data on other

processors via co-array syntax

call sync_all(/up, down/)

new_A(1:ncol) = new_A(1:ncol)
+A(1:ncol)[up] + A(1:ncol)[down]

call sync_all(/up, down/)

● Easy expression of array model
● Cost transparent

Programmer: [Over]
decomposition into virtual
processors

Runtime: Assigns VPs to
processors

Enables adaptive runtime
strategies

User View

System implementation

• Software engineering
– Number of virtual processors can

be independently controlled
– Separate VPs for different

modules

• Message driven execution
– Adaptive overlap of

communication

• Dynamic mapping
– Heterogeneous clusters

• Vacate, adjust to speed,
share

– Automatic checkpointing
– Change set of processors used
– Automatic dynamic load

balancing
– Communication optimization

Benefits

Charm++: Migratable Objects

User view

System View

Gravity Implementations

● Standard Tree-code
● “Send”: distribute particles to tree nodes as

the walk proceeds.
● Naturally expressed in Charm++
● Extremely communication intensive

● “Cache”: request treenodes from off
processor as they are needed.
● More complicated programming
● “Cache” is now part of the language

ChaNGa Features

● Tree-based gravity solver
● High order multipole expansion
● Periodic boundaries (if needed)
● SPH: (Gasoline compatible)
● Individual multiple timesteps
● Dynamic load balancing with choice of

strategies
● Checkpointing (via migration to disk)
● Visualization

Cosmological Comparisons:
Mass Function

Heitmann, et al. 2005

08/06/10 Parallel Programming Laboratory @ UIUC 16

Overall structure

08/06/10 Parallel Programming Laboratory @ UIUC 17

Remote/local latency hiding
Clustered data on 1,024 BlueGene/L processors

5.0s

Remote data work

Local data work

08/06/10 Parallel Programming Laboratory @ UIUC 18

Load balancing with GreedyLB
Zoom In 5M on 1,024 BlueGene/L processors

5.6s 6.1s

4x messages

08/06/10 Parallel Programming Laboratory @ UIUC 19

Load balancing with OrbRefineLB
Zoom in 5M on 1,024 BlueGene/L processors

5.6s 5.0s

08/06/10 Parallel Programming Laboratory @ UIUC 20

Scaling with load balancing
N

um
be

r
of

 P
ro

ce
ss

or
s

x
E

xe
cu

tio
n

T
im

e
pe

r
Ite

ra
tio

n
(s

)

Cosmo Loadbalancer

● Use Charm++ measurement based load
balancer

● Modification: provide LB database with
information about timestepping.
● “Large timestep”: balance based on previous

Large step
● “Small step” balance based on previous small

step

Results on 3 rung example

613s
429s 228s

Multistep Scaling

SPH Scaling

ChaNGa on GPU clusters

● Immense computational power
● Feeding the monster is a problem
● Charm++ GPU Manager

● User submits work requests with callback
● System transfers memory, executes, returns via

callback
● GPU operates asynchronously
● Pipelined execution

Execution of Work Requests

GPU Scaling

GPU optimization

Summary

● Successfully created highly scalable code in
HLL
● Computation/communication overlap
● Object migration for LB and Checkpoints
● Method prioritization
● GPU Manager framework

● HLL not a silver bullet
● Communication needs to be considered
● “Productivity” unclear

– Real Programmers write Fortran in any language

Thomas Quinn

Graeme Lufkin

Joachim Stadel

James Wadsley

Laxmikant Kale

Filippo Gioachin

Pritish Jetley

Celso Mendes

Amit Sharma

Lukasz Wesolowski

Edgar Solomonik

Availability

● Charm++: http://charm.cs.uiuc.edu
● ChaNGa download:

http://software.astro.washington.edu/nchilada/
● Release information:

http://hpcc.astro.washington.edu/tools/changa.html
● Mailing list: changa-users@u.washington.edu

http://charm.cs.uiuc.edu/
http://software.astro.washington.edu/nchilada/
http://hpcc.astro.washington.edu/tools/changa.html
mailto:changa-users@u.washington.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

